408 research outputs found

    Perturbative Charged Rotating 5D Einstein-Maxwell Black Holes

    Full text link
    We present perturbative charged rotating 5D Einstein-Maxwell black holes with spherical horizon topology. The electric charge Q is the perturbative parameter, the perturbations being performed up to 4th order. The expressions for the relevant physical properties of these black holes are given. The gyromagnetic ratio g, in particular, is explicitly shown to be non-constant in higher order, and thus to deviate from its lowest order value, g=3. Comparison of the perturbative analytical solutions with their non-perturbative numerical counterparts shows remarkable agreement.Comment: RevTeX style, 4 pages, 5 figure

    Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge

    Full text link
    The exact solution for the electromagnetic field occuring when the Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr-Taub-NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is revised, 3 references are adde

    Self-Dual Fields Harbored by a Kerr-Taub-bolt Instanton

    Get PDF
    We present a new exact solution for self-dual Abelian gauge fields living on the space of the Kerr-Taub-bolt instanton, which is a generalized example of asymptotically flat instantons with non-self-dual curvature, by constructing the corresponding square integrable harmonic form on this space.Comment: 7 page

    Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity

    Full text link
    In this paper, we study slowly rotating black hole solutions in Lovelock gravity (n=3). These exact slowly rotating black hole solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the uncharged black holes get no corrections from rotation. In charged case, we compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is shown that the gyromagnetic ratio keeps invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.Comment: 14 pages, no figur

    Five Dimensional Rotating Black Hole in a Uniform Magnetic Field. The Gyromagnetic Ratio

    Full text link
    In four dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behaviour of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five dimensional rotating black hole placed in a uniform magnetic field of configuration with bi-azimuthal symmetry, that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the 5-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four dimensional counterparts, the five dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3.Comment: 23 pages, REVTEX, v2: Minor changes, v3: Minor change

    String-Inspired Chern-Simons Modified Gravity In 4-Dimensions

    Full text link
    Chern-Simons modified gravity models in 4-dimensions are shown to be special cases of low energy effective string models to first order in the string constant.Comment: To appear in the European Physics Journal

    Measurement of K^+ \to \pi^0 \mu^+ \nu \gamma decay using stopped kaons

    Full text link
    The K^+ \to \pi^0 \mu^+ \nu \gamma (Kμ3γK_{\mu 3 \gamma}) decay has been measured with stopped positive kaons at the KEK 12 GeV proton synchrotron. A Kμ3γK_{\mu 3 \gamma} sample containing 125 events was obtained. The partial branching ratio Br(Kμ3γ,Eγ>30MeV,θμ+γ>20)Br(K_{\mu 3 \gamma}, E_{\gamma}>30 {\rm MeV}, \theta_{\mu^+ \gamma}>20^{\circ}) was found to be [2.4±0.5(stat)±0.6(syst)]×105[2.4 \pm 0.5(stat) \pm 0.6(syst)]\times 10^{-5}, which is in good agreement with theoretical predictions.Comment: 12 pages, 3 figures, to be published in Physics Letters

    Orbital resonances in discs around braneworld Kerr black holes

    Full text link
    Rotating black holes in the brany universe of the Randall-Sundrum type are described by the Kerr geometry with a tidal charge b representing the interaction of the brany black hole and the bulk spacetime. For b<0 rotating black holes with dimensionless spin a>1 are allowed. We investigate the role of the tidal charge b in the orbital resonance model of QPOs in black hole systems. The orbital Keplerian, the radial and vertical epicyclic frequencies of the equatorial, quasicircular geodetical motion are given and their radial profiles are discussed. The resonant conditions are given in three astrophysically relevant situations: for direct (parametric) resonances, for the relativistic precession model, and for some trapped oscillations of the warped discs, with resonant combinational frequencies. It is shown, how b could influence matching of the observational data indicating the 3:2 frequency ratio observed in GRS 1915+105 microquasar with prediction of the orbital resonance model; limits on allowed range of the black hole parameters a and b are established. The "magic" dimensionless black hole spin enabling presence of strong resonant phenomena at the radius where \nu_K:\nu_{\theta}:\nu_r=3:2:1 is determined in dependence on b. Such strong resonances could be relevant even in sources with highly scattered resonant frequencies, as those expected in Sgr A*. The specific values of a and b are given also for existence of specific radius where \nu_K:\nu_{\theta}:\nu_r=s:t:u with 5>=s>t>u being small natural numbers. It is shown that for some ratios such situation is impossible in the field of black holes. We can conclude that analysing the microquasars high-frequency QPOs in the framework of orbital resonance models, we can put relevant limits on the tidal charge of brany Kerr black holes.Comment: 31 pages, 19 figures, to appear in General Relativity and Gravitatio

    Gravitational Geons on the Brane

    Full text link
    In this paper, we examine the possibility of static, spherically symmetric gravitational geons on a 3 dimensional brane embedded in a 4+1 dimensional space-time. We choose a specific g_tt for the brane-world space-time metric. We then calculate g_rr analytically in the weak field limit and numerically for stronger fields. We show that the induced field equations on the brane do admit gravitational geon solutions.Comment: 14 pages with 9 figures. To appear in General Relativity and Gravitatio

    Effective gravitational equations on brane world with induced gravity described by f(R)f(R) term

    Full text link
    In this article we study a generalization of DGP scenarios, where the induced gravity is given by a f(R)f(R) term. We obtain the effective gravitational equations and the effective FLRW cosmological equation on the brane of this model. We show that this generalization has also two regime, a 5D regime a low energies that has a self-accelerated branch of interest for cosmology and a 4D regime at high energies that it is described a modified gravitational theory.Comment: 8 pages, disscusion improved, version accepted by JCA
    corecore